Autophagy in the eukaryotic cell.

نویسندگان

  • Fulvio Reggiori
  • Daniel J Klionsky
چکیده

The major cellular pathways for protein and organelle turnover are autophagy and proteasome-mediated degradation. These processes are important to maintain a well-controlled balance between anabolism and catabolism in order to have normal cell growth and development. They play an essential role during starvation, cellular differentiation, cell death, and aging but also in preventing some types of cancer (59). These degradation pathways permit the cell to eliminate unwanted or unnecessary organelles and to recycle the components for reuse (54, 59). The lysosome or vacuole is the major catabolic factory in eukaryotic cells and contains a range of hydrolases capable of degrading all cellular constituents. Organelle turnover is accomplished exclusively at this location through a process of autophagy that is conserved among yeast, plant, and animal cells. Microautophagy involves the uptake of cytoplasm at the lysosome or vacuole surface but has not been well characterized. In contrast, degradation by macroautophagy involves membrane engulfment at an initial site that is separate from this organelle. In mammalian cells, this process has been known for a long time, but the early studies were primarily phenomenological. Molecular components have been identified in the last decade by genetic screening of the yeast Saccharomyces cerevisiae (32, 80, 117, 121) and in recent years by two-hybrid screening of the same organism with predetermined baits or by genome-wide approaches (20, 42, 45, 71, 123). Surprisingly, molecular genetic studies with yeast have shown the overlap of the macroautophagy machinery with that used for peroxisome degradation (pexophagy) and the cytoplasm-to-vacuole targeting (Cvt) pathway (31, 39, 99), which ensures the delivery of the resident vacuolar protease aminopeptidase I (Ape1) (58, 97). These processes operate under different nutritional conditions, and the Cvt pathway in particular is biosynthetic. However, biochemical and morphological analyses have shown that the basic mechanism in all three processes is the sequestration of the cargo material (precursor Ape1 [prApe1], bulk cytoplasm, or specific organelle) within double-membrane structures (5–7, 39, 113). The biogenesis and consumption of these vesicles can be divided into four discrete steps: induction and cargo packaging, formation and completion, docking and fusion, and breakdown. Figure 1 shows schematically these events for macroautophagy, the Cvt pathway, and pexophagy. The induction of vesicle formation during macroautophagy is stimulated by cellular signals such as starvation (113), whereas during Cvt transport the binding of prApe1 to its receptor may be the signal that triggers induction (98). Upon completion, the sequestering vesicle (called an autophagosome or Cvt vesicle, respectively) docks with the lysosome or vacuole and then fuses with it. In this way, the inner vesicle is liberated inside the lysosome or vacuole, where it is finally consumed by hydrolases. In addition to induction, another major difference between these pathways appears to be the regulation of the size of the vesicle. Autophagosomes that form during starvation have anywhere from 8to 200-fold more volume than Cvt vesicles that are induced under nutrient-rich conditions (300 to 900 nm versus 140 to 160 nm in diameter, respectively) (6). Finally, several lines of evidence suggest that the source of the sequestering vesicles for macroautophagy and the Cvt pathway differ at least in part. For example, macroautophagy but not the Cvt pathway requires the Sec12, Sec16, Sec23, and Sec24 proteins for formation of the membrane coat, COPII, that drives the formation of vesicles from the endoplasmic reticulum (41). Conversely, only the Cvt pathway utilizes the tSNARE protein Tlg2 and the Sec1 homologue Vps45 (1). This review focuses on the yeast S. cerevisiae because of the recent advances in understanding of the molecular mechanism of autophagy, pexophagy, and Cvt transport in this organism. However, this compendium will also point out the high degree of conservation of these processes among eukaryotes, emphasizing the relevance of the studies with yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

Knockdown of mitofilin inhibits autophagy and facilitates starvation-induced apoptosis in HeLa cells

Objective(s): Mitofilin contributes to the maintenance of mitochondrial structure and functions. This study was undertaken to determine the mechanisms underlying its regulation of apoptosis.  Materials and Methods: Mitofilin was knockdowned by specific short hairpin RNA (shRNA) and the stable HeLa cell clone was selected. The autophagy a...

متن کامل

Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line

Objective(s): Glioblastoma multiforme (GBM) is one of the most lethal forms of human cancer and temozolomide (TMZ) is currently part of the standard treatment for this disease. Combination therapy using natural substances can enhance the anti-cancer activity of TMZ. The purpose of this study was to evaluate the effect of TMZ in combination with thymoquinone (TQ) on human GBM cell line (U87MG). ...

متن کامل

Cell Survival Effects of Autophagy Regulation on Umbilical Cord-Derived Mesenchymal Stem Cells Following Exposure to Oxidative Stress

Background: Due to oxidative stress, hypoxia, and serum deprivation, a large percentage of mesenchymal stem cells (MSCs) die in the early stages of transplantation. The present study aimed to address whether induction or inhibition of autophagy would affect the viability of MSCs after exposure to oxidative stress.Methods: MSCs were isolated from umbilical cord tissue using the Ficoll grad...

متن کامل

Autophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure

Background: Mesenchymal stem cells (MSCs) have been recently received increasing attention for cell-based therapy, especially in regenerative medicine. However, the low survival rate of these cells restricts their therapeutic applications. It is hypothesized that autophagy might play an important role in cellular homeostasis and survival. This study aims to investigate the regenerative potentia...

متن کامل

Proteasome Inhibition by Carfilzomib Induced Apotosis and Autophagy in a T-cell Acute Lymphoblastic Leukemia Cell Line

T-cell acute lymphoblastic leukemia is an aggressive hematologic malignancy which is usuallyassociated with unfavorable prognosis particularly in patients with refractory/relapsed disease.Therefore, development of novel therapeutic strategies is highly required for improving theoutcome of these patients. Although there are several studies evaluating the efficacy of proteasome<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2002